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Overview

When a calculation in physics, engineering, or geometry involves a
cylinder, cone, sphere, we can often simplify our work by using cylindrical
or spherical coordinates, which are introduced in the lecture.

The procedure for transforming to these coordinates and evaluating the
resulting triple integrals is similar to the transformation to polar
coordinates in the plane discussed earlier.
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Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates
in the xy -plane with the usual z-axis.

This assigns to every point in space one or more coordinate triples of the
form (r , θ, z).
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Integration in Cylindrical Coordinates

Definition 1.

Cylindrical coordinates represent a point P in space by ordered triples
(r , θ, z) in which

1. r and θ are polar coordinates for the vertical projection of P on the
xy-plane

2. z is the rectangular vertical coordinate.

The values of x , y , r , and θ in rectangular and cylindrical coordinates are
related by the usual equations.

Equations Relating Rectangular (x , y , z) and Cylindrical (r , θ, z)
Coordinates :

x = r cos θ, y = r sin θ, z = z ,

r2 = x2 + y2, tan θ = y/x .
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Constant-coordinate Equations in Cylindrical Coordinates

In cylindrical coordinates, the equation r = a describes not just a circle in
the xy -plane but an entire cylinder about the z-axis.

The z-axis is given by r = 0.

The equation θ = θ0 describes the plane
that contains the z-axis and makes an an-
gle θ0 with the positive x-axis.

And, just as in rectangular coordinates,
the equation z = z0 describes a plane per-
pendicular to the z-axis.

Thus constant-coordinate equations in
cylindrical coordinates yield cylinders and
planes.
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Cylindrical Coordinates

Cylindrical coordinates are good for describing cylinders whose axes run
along the z-axis and planes the either contain the z-axis or lie
perpendicular to the z-axis.

Surfaces like these have equations of constant coordinate values:

r = 4 Cylinder, radius 4, axis the z-axis

θ = π/3 Plane containing the z-axis

z = 2 Plane perpendicular to the z-axis

When computing triple integrals over a region D in cylindrical coordinates,
we partition the region into n small cylindrical wedges, rather than into
rectangular boxes.
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Cylindrical Coordinates

In the kth cylindrical wedge, r , θ and z change by ∆rk ,∆θk , and ∆zk , and
the largest of these numbers among all the cylindrical wedges is called the
norm of the partition.

We define the triple integral as a limit of Riemann sums using these
wedges.

The volume of such a cylindrical wedge ∆Vk is obtained by taking the
area ∆Ak of its base in the rθ-plane and multiplying by the height ∆z .
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Cylindrical Coordinates

For a point (rk , θk , zk) in the center of the kth wedge, we calculated in
polar coordinates that ∆Ak = rk ∆rk ∆θk . So ∆Vk = ∆zk rk ∆rk ∆θk
and a Riemann sum for f over D has the form

Sn =
n∑

k=1

f (rk , θk , zk)∆zk rk ∆rk ∆θk .

The triple integral of a function f over D is obtained by taking a limit of
such Riemann sums with partitions whose norms approach zero

lim
n→∞

=

∫∫∫
D

f dV =

∫∫∫
D

f dz r dr dθ.

Triple integrals in cylindrical coordinates are then evaluated as iterated
integrals.
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How to Integrate in Cylindrical Coordinates : Sketch

To evaluate ∫∫∫
D

f (r , θ, z) dV

over a region D in space in cylindrical coordinates, integrating first with
respect to z , then with respect to r , and finally with respect to θ, take the
following steps.

Sketch the region D along with its projection R on the xy -plane. Label the
surfaces and curves that bound D and R.
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How to Integrate in Cylindrical Coordinates : The z-Limits
of Integration

Draw a line M through a typical point (r , θ) of R parallel to the z-axis.

As z increases, M enters D at z = g1(r , θ) and leaves at z = g2(r , θ).
These are the z-limts of integration.
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How to Integrate in Cylindrical Coordinates : The r -Limits
of Integration

Draw a ray L through (r , θ) from the origin.

The ray enters R at r = h1(θ) and leaves at r = h2(θ).

These are the r -limits of integration.
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How to Integrate in Cylindrical Coordinates : The θ-Limits
of Integration

As L sweeps across R, the angle θ it makes with the positive x-axis runs
from θ = α to θ = β.

These are the θ-limits of integration.

The integral is∫∫∫
D

f (r , θ, z) dV =

∫ θ=β

θ=α

∫ r=h2(θ)

r=h1(θ)

∫ z=g2(r ,θ)

z=g1(r ,θ)
f (r , θ, z) dz r dr dθ.
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How to Integrate in Cylindrical Coordinates - An Example

Example 2.

Let f (r , θ, z) be a function defined over the region D bounded below by
the plane z = 0, laterally by the circular cylinder x2 + (y − 1)2 = 1, and
above by the paraboloid z = x2 + y2.

The base of D is also the region’s projection R on the xy -plane. The
boundary of R is the circle x2 + (y − 1)2 = 1. Its polar coordinate
equation is r = 2 sin θ.
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How to Integrate in Cylindrical Coordinates - An Example

We find the limits of integration, starting with the z-limits. A line M
through typical point (r , θ) in R parallel to the z-axis enters D at z = 0
and leaves at z = x2 + y2 = r2.

Next we find the r -limits of integration. A ray L through (r , θ) from the
origin enters R at r = 0 and leaves at r = 2 sin θ.

Finally we find the θ-limits of integration. As L sweeps across R, the angle
θ it makes with the positive x-axis runs from θ = 0 to θ = π.

The integral is∫∫∫
D

f (r , θ, z) dV =

∫ π

0

∫ 2 sin θ

0

∫ r2

0
f (r , θ, z) dz r dr dθ.
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Example

Example 3.

Find the centroid (δ = 1) of the solid enclosed by the cylinder
x2 + y2 = 4, bounded above by the paraboloid z = x2 + y2, and bounded
below by the xy−plane.

Solution : We sketch the solid, bounded above by the paraboloid z = r2

and below by the plane z = 0.
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Solution (contd...)

Its base R is the disk 0 ≤ r ≤ 2 in the xy−plane. The solid’s centroid
(x̄ , ȳ , z̄) lies on its axis of symmetry, here the z-axis. This makes
x̄ = ȳ = 0. To find z̄ , we divide the first moment Mxy by the mass M.

To find the limits of integration for the mass and moment integrals, we
continue with the four basic steps. We completed our initial sketch. The
remaining steps give the limits of integration.

The z-limits. A line M through a typical point (r , θ) in the base parallel to
the z-axis enters the solid at z = 0 and leaves at z = r2.

The r − limits. A ray L through (r , θ) from the origin enters R at r = 0
and leaves at r = 2.

The θ − limits. As L sweeps over the base like a clock hand, the angle θ it
makes with the positive x-axis runs from θ = 0 to θ = 2π.
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Solution (contd...)

The value of Mxy is

Mxy =

∫ 2π

0

∫ 2

0

∫ r2

0
z dz r dr dθ =

∫ 2π

0

∫ 2

0

[
z2

2

]r2
0

r dr dθ

=

∫ 2π

0

∫ 2

0

r5

2
dr dθ =

∫ 2π

0

[
r6

12

]2
0

dθ =

∫ 2π

0

16

3
dθ =

32π

3
.

The value of M is

M =

∫ 2π

0

∫ 2

0

∫ r2

0
dz r dr dθ =

∫ 2π

0

∫ 2

0
[z ]r

2

0 r dr dθ

=

∫ 2π

0

∫ 2

0
r3dr dθ =

∫ 2π

0

[
r4

4

]2
0

dθ =

∫ 2π

0
4dθ = 8π.

Therefore z̄ =
Mxy

M = 32π
3

1
8π = 4

3 , and the centroid is (0, 0, 4/3). Notice
that the centroid lies outside the solid.
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Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one
distance.

The first coordinate, ρ = |
−→
OP|, is the point’s distance from the origin.

Unlike r , the variable ρ is never negative.
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Spherical Coordinates

The scond coordinate, φ, is the angle |
−→
OP| makes with the positive z-axis.

It is required to lie in the interval [0, π].

The third coordinate is the angle θ as measured in cylindrical coordinates.

Definition 4.

Spherical Coordinates represent a point P in space by ordered triples
(ρ, φ, θ) in which

1. ρ is the distance from P to the origin.

2. φ is the angle
−→
OP makes with the positive z-axis (0 ≤ φ ≤ π).

3. θ is the angle from cylindrical coordinates.
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Spherical Coordinates

On maps of the Earch, θ is related to the meridian of a point on the Earth
and φ to its latitute, while ρ is related to elevation above the Earth’s
surface.

The equation ρ = a describes the sphere of radius a centered at the origin
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Spherical Coordinates

The equation φ = φ0 describes a single cone whose vertex lies at the origin
and whose axis lies along the z-axis.

Here is an iterpretation to include the xy -plane as the cone φ = π/2.

If φ0 is greater than π/2, the cone φ = φ0 opens downward.

The equation θ = θ0 describes the half-plane that contains the z-axis and
makes an angle θ0 with the positive x-axis.

Equations Relating Spherical Coordinates to Cartesian and
Cylindrical Coordinates :

r = ρ sinφ, x = r cos θ = ρ sinφ cos θ,

z = ρ cosφ, y = r sin θ = ρ sinφ sin θ,

ρ =
√

x2 + y2 + z2 =
√

r2 + z2.
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Spherical Coordinates

A spherical coordinate equation for the
sphere x2 + (y − 1)2 + z2 = 1 is

ρ = 2 sinφ sin θ.

A spherical coordinate equation for the
cone z =

√
x2 + y2 is

φ = π/4.
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Spherical Coordinates

Spherical coordinates are good for describing spheres centered at the
origin, half-planes hinged along the z-axis, and cones whose vertices lie at
the origin and whose axes lie along the z-axis.

Surfaces like these have equations of constant coordinate value :

ρ = 4 Sphere, radius 4, center at origin

φ = π/3 Cone opening up from the origin,

making an angle of π/3 radians with the positive z-axis

θ = π/3 Half-plane, hinged along the z-axis,

making an angle of π/3 radians with the positive x-axis.
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Spherical Coordinates

When computing triple integrals over a region D in spherical coordinates,
we partition the region into n spherical wedges.

The size of the kth spherical wedge, which contains a point (ρk , φk , θk), is
given by changes by ∆ρk ,∆θk , and ∆φk in ρ, θ, and φ.

Such a spherical wedge has one edge a circular arc of length ρk∆φk ,
another edge a circular arc of length ρk sinφk∆θk , and thickness ∆ρk .

The spherical wedge closed appropriates a cube of these dimensions when
∆ρk ,∆θk , and ∆φk are all small.
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Spherical Coordinates

It can be shown that the volume of this spherical wedge is ∆Vk is

∆Vk = ρ2K sinφk∆ρk∆φk∆θk

for (ρk , φk , θk) a point chosen inside the wedge.

The corresponding Riemann sum for a function F (ρ, φ, θ) is

Sn =
n∑

k=1

F (ρk , φk , θk)ρ2k sinφk∆ρk∆φk∆θk .

As the norm of a partition approaches zero, and the spherical wedges get
smaller, the Riemann sums have a limit when F is continuous :

lim
n→∞

Sn =

∫∫∫
D

F (ρ, φ, θ) dV =

∫∫∫
D

F (ρ, φ, θ) ρ2 sinφ dρ dφ dθ.
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Spherical Coordinates

In spherical coordinates, we have

dV = ρ2 sinφ dρ dφ dθ.

To evaluate integrals in spherical coordinates, we usually integrate first
with respect to ρ.

The procedure for finding the limits of integration is shown below.

We restrict our attention to integrating over domains that are solids of
revolution about the z-axis (or portions thereof) and for which the limits
for θ and φ are constant.

P. Sam Johnson Triple Integrals in Cylindrical and Spherical Coordinates 26/67



How to Integrate in Spherical Coordinates : Sketch

To evaluate ∫∫∫
D

f (ρ, φ, θ) dV

over a region D in space in spherical coordinates, integrating first with
respect to ρ, then with respect to φ, and finally with respect to θ, take the
following steps.

Sketch the region D along with its projection R on the xy -plane. Label the
surfaces that bound D.
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How to Integrate in Spherical Coordinates : ρ-Limits of
Integration

Draw a ray M from the origin through D making an angle φ with the
positive z-axis. Also draw the projection of M on the xy -plane (call the
projection L).

The ray L makes an angle θ with the positive x-axis. As ρ increases, M
enters D at ρ = g1(φ, θ) and leaves at ρ = g2(φ, θ). These are the ρ-limits
of integration.
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How to Integrate in Spherical Coordinates : φ and θ-Limits
of Integration

φ-Limits of Integration

For any given θ, the angle φ that M makes with the z-axis runs from
φ = φmin to φ = φmax . These are the φ-limits of integration.

θ-Limits of Integration

The ray L sweeps over R as θ runs from α to β. These are the θ-limits of
integration.

The integral is∫∫∫
D

f (ρ, φ, θ) dV =

∫ θ=β

θ=α

∫ φ=φmax

φ=φmin

∫ ρ=g2(φ,θ)

ρ=g1(φ,θ)
f (ρ, φ, θ) ρ2 sinφ dρ dφ dθ.
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How to Integrate in Spherical Coordinates - An Example

Example 5.

Find the volume of the “ice cream cone” D cut from the solid sphere
ρ ≤ 1 by the cone φ = π/3.

The volume is

V =

∫∫∫
D

ρ2 sinφ dρ dφ dθ,

the integral f (ρ, φ, θ) = 1 over D. To find the limits of integration for
evaluating the integral, we begin by sketching D and its projection R on
the xy -plane.
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How to Integrate in Spherical Coordinates - An Example

We draw a ray M from the origin through D making an angle φ with the
positive z-axis.

We also draw L, the projection of M on the xy -plane, along with the angle
θ that L makes with the positive x-axis. Ray M enters D at ρ = 0 and
leaves at ρ = 1.

The cone φ = π/3 makes an angle of π/3 with the positive z-axis. For any
given θ, the angle φ can run from φ = 0 to φ = π/3. The ray L sweeps
over R as θ runs from 0 to 2π.

The volume is

V =

∫∫∫
D

ρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ π/3

0

∫ 1

0
ρ2 sinφ dρ dφ dθ = π/3.
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Example

Example 6.

A solid of constant density δ = 1 occupies the region D in Example 5.
Find the solid’s moment of intertia about the z-axis.

Solution : In rectangular coordinates, the moment is

Iz =

∫∫∫ (
x2 + y2

)
dV .

In spherical coordinates,
x2 + y2 = (ρ sinφ cos θ)2 + (ρ sinφ sin θ)2 = ρ2 sin2 φ. Hence,

lz =

∫∫∫ (
ρ2 sin2 φ

)
ρ2 sinφ dρ dφ dθ =

∫∫∫
ρ4 sin3 φ dρ dφ dθ.
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Solution (contd...)

For the region in Example 5, this becomes

Iz =

∫ 2π

0

∫ π/3

0

∫ 1

0
ρ4 sin3 φ dρ dφ dθ =

∫ 2π

0

∫ π/3

0

[
ρ5

5

]1
0

sin3 φ dφ dθ

=
1

5

∫ 2π

0

∫ π/3

0

(
1− cos2 φ

)
sin φ dφ dθ =

1

5

∫ 2π

0

[
− cosφ+

cos3 φ

3

]π/3
0

dθ

=
1

5

∫ 2π

0

(
−
1

2
+ 1 +

1

24
−

1

3

)
dθ =

1

5

∫ 2π

0

5

24
dθ =

1

24
(2π) =

π

12
.
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Evaluating Integrals in Cylindrical Coordinates

Exercise 7.

Evaluate the cylindrical coordinate integrals in the following exercises.

1.

∫ 2π

0

∫ 1

0

∫ √2−r2
r

dz r dr dθ

2.

∫ π

0

∫ θ/π

0

∫ 3
√
4−r2

−
√
4−r2

z dz r dr dθ

3.

∫ 2π

0

∫ 1

0

∫ 1/
√
2−r2

r
3 dz r dr dθ

4.

∫ 2π

0

∫ 1

0

∫ 1/2

1/2

(
r2 sin2 θ + z2

)
dz r dr dθ
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Solution for the Exercise 7

1.
∫ 2π
0

∫ 1
0

∫√2−r2

r dz r dr dθ =
∫ 2π
0

∫ 1
0 [r(2− r2)1/2 − r2]dr dθ =∫ 2π

0

[
− 1

3
(2− r2)3/2 − r3

3

]1
0
dθ =

∫ 2π
0

(
23/2

3
− 2

3

)
dθ = 4π(

√
2−1)
3

2.
∫ π
0

∫ θ/π
0

∫ 3
√

4−r2√
4−r2

z dz r dr dθ =
∫ π
0

∫ θ/π
0

1
2

[
9(4− r2)− (4− r2)

]
r dr dθ =

4
∫ π
0

∫ θ/π
0 (4r − r3) dr dθ = 4

∫ π
0

[
2r2 − r4

4

]θ/π
0

= 4
∫ π
0

(
2θ2

π2 − θ4

4π4

)
dθ = 37π

15

3.
∫ 2π
0

∫ 1
0

∫ (2−r2)−1/2

r 3 dzr dr dθ = 3
∫ 2π
0

∫ 1
0

[
r(2− r2)−1/2 − r2

]
dr dθ =

3
∫ 2π
0

[
−(2− r2)1/2 − r3

3

]1
0
dθ = 3

∫ 2π
0

(√
2− 4

3

)
dθ = π(6

√
2− 8)

4.
∫ 2π
0

∫ 1
0

∫ 1/2
−1/2

(r2 sin2 θ + z2)dz r dr dθ =
∫ 2π
0

∫ 1
0 (r

3 sin2 θ + r
12
)dr dθ =∫ 2π

0

(
sin2 θ

4
+ 1

24

)
dθ = π

3
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Changing Order of Integration in Cylindrical Coordinates

Exercise 8.

The integrals we have seen so far suggest that there are preferred orders of integration for
cylindrical coordinates, but other orders usually work well and are occasionally easier to
evaluate. Evaluate the integrals in the following exercises.

1.

∫ 2π

0

∫ 3

0

∫ z/3

0
r3 dr dz dθ 2.

∫ 2

0

∫ √4−r2

r−2
(r sin θ + 1) r dθ dz dr

3. Let D be the region bounded below by the plane z = 0, above by the sphere
x2 + y2 + z2 = 4, and on the sides by the cylinder x2 + y2 = 1. Set up the triple integrals
in cylindrical coordinates that give the volume of D using the following orders of
integration.

(a) dz dr dθ (b) dr dz dθ (c) dθ dz dr

4. Let D be the region bounded below by the cone z =
√

x2 + y2 and above by the
paraboloid z = 2− x2 − y2. Set up the triple integrals in cylindrical coordinates that give
the volume of D using the following orders of integration.

(a) dz dr dθ (b) dr dz dθ (c) dθ dz dr
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Solution for (1.) and (2.) in Exercise 8

1.

∫ 2π

0

∫ 3

0

∫ z/3

0
r3 dr dz dθ =

∫ 2π

0

∫ 3

0

z4

324
dz dθ =

∫ 2π

0

3

20
dθ =

3π

10

2.

∫ 2

0

∫ √4−r2

r−2

∫ 2x

0
(r sin θ + 1)r dθ dz dr =

∫ 2

0

∫ √4−r2

r−2
2πr dz dr =

2π

∫ 2

0

[
r(4− r2)1/2 − r2 + 2r

]
dr = 2π

[
−
1

3
(4− r2)3/2 −

r3

3
+ r2

]2
0

=

2π

[
−
8

3
+ 4 +

1

3
(4)3/2

]
= 8π
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Solution for (3.) in Exercise 8

(a)

∫ 2π

0

∫ 1

0

∫ √4−r2

0
dz r dr dθ

(b)

∫ 2π

0

∫ √3

0

∫ 1

0
r dr dz dθ +

∫ 2π

0

∫ 2

√
3

∫ √4−r2

0
r dr dz dθ

(c)

∫ 1

0

∫ √4−r2

0

∫ 2π

0
r dθ dz dr
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Solution for (4.) in Exercise 8

(a)

∫ 2π

0

∫ 1

0

∫ 2−r2

r
dz r dr dθ

(b)

∫ 2π

0

∫ 1

0

∫ z

0
r dr dz dθ +

∫ 2π

0

∫ 2

1

∫ √2−z

0
r dr dz dθ

(c)

∫ 1

0

∫ 2−r2

r

∫ 2π

0
r dθ dz dr
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Finding Iterated Integrals in Cylindrical Coordinates

Exercise 9.

1. Give the limits of integration for evaluating the integral∫∫∫
f (r , θ, z) dz r dr dθ

as an iterated integral over the region that is bounded below by the
plane z = 0, on the side by the cylinder r = cos θ, and on top by the
paraboloid z = 3r2.

2. Convert the integral∫ 1

−1

∫ √1−y2

0

∫ x

0

(
x2 + y2

)
dz dx dy

to an equivalent integral in cylindrical coordinates and evaluate the
result.
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Solution for the Exercise 9

1.

∫ π/2

−π/2

∫ cos θ

0

∫ 3r2

0
f (r , θ, z) dz r dr dθ

2. ∫ π/2

−π/2

∫ 1

0

∫ r cos θ

0
r3 dz dr dθ =

∫ π/2

−π/2

∫ 1

0
r4 cos θ dr dθ

=
1

5

∫ π/2

−π/2
cos θ dθ

=
2

5
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Exercise 10.

In the following exercises, set up the iterated integral for evaluating∫∫∫
D
f (r , θ, z) dz r dr dθ

over the given region D.

1. D is the right circular cylinder whose base is the
circle r = 2 sin θ in the xy− plane and whose top
lies in the plane z = 4− y .

2. D is the right circular cylinder whose base is the
circle r = 3 cos θ and whose top lies in the plane
z = 5− x .
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Solution for the Exercise 10

1.

∫ π

0

∫ 2 sin θ

0

∫ 4+r sin θ

0
f (r , θ, z) dz r dr dθ

2.

∫ π/2

−π/2

∫ 3 cos θ

0

∫ 5r cos θ

0
f (r , θ, z) dz r dr dθ
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Exercise 11.

In the following exercises, set up the iterated integral for evaluating∫∫∫
D
f (r , θ, z) dz r dr dθ

over the given region D.

1. D is the solid right cylinder whose base is the re-
gion in the xy− plane that lies inside the cardioid
r = 1 + cos θ and outside the circle r = 1 and
whose top lies in the plane z = 4.

2. D is the prism whose base is the triangle in the
xy−plane bounded by the y−axis and the lines
y = x and y = 1 and whose top lies in the plane
z = 2− x .
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Solution for the Exercise 11

1.

∫ π/2

−π/2

∫ 1+cos θ

1

∫ 4

0
f (r , θ, z) dz r dr dθ

2.

∫ π/4

0

∫ sec θ

0

∫ 2+r sin θ

0
f (r , θ, z) dz r dr dθ
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Evaluating Integrals in Spherical Coordinates

Exercise 12.

Evaluate the spherical coordinate integrals in the following exercises.

1.

∫ π

0

∫ π

0

∫ 2 sinφ

0
ρ2 sinφ dρ dφ dθ

2.

∫ 2π

0

∫ π

0

∫ (1−cosφ)/2

0
ρ2 sinφ dρ dφ dθ

3.

∫ 3π/2

0

∫ π

0

∫ 1

0
5ρ3 sin3 φ dρ dφ dθ

4.

∫ 2π

0

∫ π/4

0

∫ secφ

0
(ρ cosφ) ρ2 sinφ dρ dφ dθ
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Solution for the Exercise 12

1.

∫ π

0

∫ π

0

∫ 2 sinφ

0
ρ2 sinφ dρ dφ dθ =

8

3

∫ π

0

∫ π

0
sin4 φ dφ dθ =

8

3

∫ π

0

([
−
sin3 φ cosφ

4

]π
0

+
3

4

∫ π

0
sin2 φ dφ

)
dθ = 2

∫ π

0

∫ π

0
sin2 φ dφ dθ =∫ π

0

[
θ −

sin 2θ

2

]π
0

dθ =

∫ π

0
πdθ = π2

2.

∫ 2π

0

∫ π

0

∫ (1−cosφ)/2

0
ρ2 sinφ dρ dφ dθ =

1

24

∫ 2π

0

∫ π

0
(1− cosφ)3 sinφd φ dθ =

1

96

∫ 2π

0

[
(1− cosφ)4

]π
0
dθ =

1

96

∫ 2π

0
(24 − 0) dθ =

16

96

∫ 2π

0
dθ =

1

6
(2π) =

π

3

3.

∫ 3π/2

0

∫ π

0

∫ 1

0
5ρ3 sin3 φ dρ dφ dθ =

5

4

∫ 3π/2

0

∫ π

0
sin3 φ dφ dθ =

5

4

∫ 3π/2

0

([
−
sin2 φ cosφ

3

]π
0

+
2

3

∫ π

0
sinφ dφ

)
dθ =

5

6

∫ 3π/2

0
[− cosφ]π0 dθ =

5

3

∫ 3π/2

0
dθ =

5π

2

4.

∫ 2π

0

∫ π/4

0

∫ secφ

0
ρ3 sinφ cosφ dρ dφ dθ =

1

4

∫ 2π

0

∫ π/4

0
tanφ sec2 φ dφ dθ =

1

4

∫ 2π

0
[
1

2
tan2 φ]

π/4
0 dθ =

1

8

∫ 2π

0
dθ =

π

4
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Changing the order of Integration in Spherical Coordinates

Exercise 13.

The previous integrals suggest there are preferred orders of integration for
spherical coordinates, but other orders give the same value and are
occasionally easier to evaluate. Evaluate the integrals in the following
exercises.

1.

∫ 2

0

∫ 0

−π

∫ π/2

π/4
ρ3 sin 2φ dφ dθ dρ

2.

∫ 1

0

∫ π

0

∫ π/4

0
12ρ sin3 φ dφ dθ dρ
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Solution for the Exercise 13

1.

∫ 2

0

∫ 0

−π

∫ π/2

π/4
ρ3 sin 2φ dφ dθ dρ =

∫ 2

0

∫ 0

−π
ρ3[−

cos 2φ

2
]
π/2
π/4

dθ dρ =

∫ 2

0

∫ 0

−π

ρ3

2
dθ dρ =∫ 2

0

ρ3π

2
dρ =

[
πρ3

8

]2
0

= 2π

2.

∫ 1

0

∫ π

0

∫ π/4

0
12ρ sin3 φ dφ dθ dρ =∫ 1

0

∫ π

0

(
12ρ

[
− sin2 ρ cosφ

3

]π/4
0

+ 8ρ

∫ π/4

0
sinφ dφ

)
dθ dρ =∫ 1

0

∫ π

0

(
−

2ρ
√
2
− 8ρ[cosφ]

π/4
0

)
dθ dρ =

∫ 1

0

∫ π

0

(
8ρ−

10ρ
√
2

)
dθ dρ =

π

∫ 1

0

(
8ρ−

10ρ
√
2

)
dρ = π

[
4ρ2 −

5ρ2
√
2

]1
0

=

(
4
√
2− 5

)
π

√
2
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Integration in Spherical Coordinates

Exercise 14.

1. Let D be the region bounded below by the plane z = 0, above by the
sphere x2 + y2 + z2 = 4, and on the sides by the cylinder
x2 + y2 = 1. Set up the triple integrals in spherical coordinates that
give the volume of D using the following orders of integration.

(a) dρ dφ dθ (b) dφ dρ dθ

2. Let D be the region bounded below by the cone z =
√

x2 + y2 and
above by the plane z = 1. Set up the triple integrals in spherical
coordinates that give the volume of D using the following orders of
integration.

(a) dρ dφ dθ (b) dφ dρ dθ
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Solution for (1.) in Exercise 14

(a) x2 + y2 = 1⇒ ρ2 sin2 φ = 1, and ρ sinφ = 1⇒ ρ = cscφ; thus

∫ 2π

0

∫ π/6

0

∫ 2

0
ρ2 sinφ dρ dφ dθ +

∫ 2π

0

∫ π/2

π/6

∫ cscφ

0
ρ2 sinφ dρ dφ dθ.

(b)

∫ 2π

0

∫ 2

1

∫ sin−1(1/ρ)

π/6
ρ2 sinφ dφ dρ dθ +

∫ 2π

0

∫ 2

0

∫ π/6

0
ρ2 sinφ dφ dρ dθ
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Solution for (2.) in Exercise 14

(a)

∫ 2π

0

∫ π/4

0

∫ secφ

0
ρ2 sinφ dρ dφ dθ

(b)

∫ 2π

0

∫ 1

0

∫ π/4

0
ρ2 sinφ dφ dρ dθ +

∫ 2π

0

∫ √2

1

∫ π/4

cos−1(1/ρ)
ρ2 sinφ dφ dρ dθ
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Finding Iterated Integrals in Spherical Coordinates

Exercise 15.

In the following exercises,
(a) find the spherical coordinate limits for the integral that calculates the volume of the given

solid and then

(b) evaluate the integral.

1. The solid between the sphere ρ = cosφ and the
hemisphere ρ = 2, z ≥ 0.

2. The solid bounded below by the sphere ρ =
2 cosφ and above by the cone z =

√
x2 + y2.

3. The solid bounded below by the xy−plane, on
the sides by the sphere ρ = 2, and above by the
cone φ = π/3.
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Solution for the Exercise 15

1. V =

∫ 2π

0

∫ π/2

0

∫ 2

cosφ
ρ2 sinφ dρ dφ dθ =

1

3

∫ 2π

0

∫ π/2

0
(8− cos3 φ) sinφ dφ dθ =

1

3

∫ 2π

0

[
−8 cosφ+

cos4 φ

4

]π/2
0

dθ =
1

3

∫ 2π

0

(
8−

1

4

)
dθ = (

31

12
)(2π) =

31π

6

2. V =

∫ 2π

0

∫ π/2

π/4

∫ 2 cosφ

0
ρ2 sinφ dρ dφ dθ =

8

3

∫ 2π

0

∫ π/2

π/4
cos3 φ sinφ dφ dθ =

8

3

∫ 2π

0

[
−
cos4 φ

4

]π/2
π/4

dθ =

(
8

3

)(
1

16

)∫ 2π

0
dθ =

1

6
(2π) =

π

3

3. V =

∫ 2π

0

∫ π/2

π/3

∫ 2

0
ρ2 sinφ dρ dφ dθ =

8

3

∫ 2π

0

∫ π/2

π/3
sinφ dφ dθ =

8

3

∫ 2π

0
[− cosφ]

π/2
π/3

dθ =
4

3

∫ 2π

0
dθ =

8π

3
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Finding Triple Integrals

Exercise 16.

1. Set up triple integrals for the volume of the sphere ρ = 2 in

(a) spherical,
(b) cylindrical, and
(c) rectangular coordinates.

2. Let D be the smaller cap cut from a solid ball of radius 2 units by a
plane 1 unit from the center of the sphere. Express the volume of D
as an iterated triple integral in

(a) spherical,
(b) cylindrical, and
(c) rectangular coordinates. Then
(d) find the volume by evaluating one of the three triple integrals.

P. Sam Johnson Triple Integrals in Cylindrical and Spherical Coordinates 55/67



Solution for (1.) in Exercise 16

(a) 8

∫ π/2

0

∫ π/2

0

∫ 2

0
ρ2 sinφ dρ dφ dθ

(b) 8

∫ π/2

0

∫ 2

0

∫ √4−r2

0
dz r dr dθ

(c) 8

∫ 2

0

∫ √4−x2

0

∫ √4−x2−y2

0
dz dy dx
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Solution for (2.) in Exercise 16

(a) V =

∫ 2π

0

∫ π/3

0

∫ 2

secφ
ρ2 sinφ dρ dφ dθ

(b) V =

∫ 2π

0

∫ √3

0

∫ √4−r2

1
dz r dr dθ

(c) V =

∫ √3

−
√
3

∫ √3−x2

−
√

3−x2

∫ √4−x2−y2

1
dz dy dx

(d) V =

∫ 2π

0

∫ √3

0

[
r(4− r2)1/2 − r

]
dr dθ =

∫ 2π

0

[
−
(4− r2)3/2

3
−

r2

2

]√3

0

dθ =∫ 2π

0

(
−
1

3
−

3

2
+

41/2

3

)
dθ =

5

6

∫ 2π

0
dθ =

5π

3
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Volumes

Exercise 17.

Find the volumes of the solids in the following exercises.

1.

2.

3.
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Solution for the Exercise 17

1. V = 4

∫ π/2

0

∫ 1

0

∫ 4−4r2

r4−1
dz r dr dθ = 4

∫ π/2

0

∫ 1

0
(5r − 4r3 − r5)dr dθ =

4

∫ π/2

0
(
5

2
− 1−

1

6
)dθ = 4

∫ π/2

0
dθ =

8π

3

2. V =

∫ 2π

3π/2

∫ 3 cos θ

0

∫ −r sin θ

0
dz r dr dθ =

∫ 2π

3π/2

∫ 3 cos θ

0
−r2 sin θ dr dθ =∫ 2π

3π/2
(−9 cos3 θ)(sin θ)dθ =

[
9

4
cos4 θ

]2π
3π/2

=
9

4
− 0 =

9

4

3. V = 2

∫ π

π/2

∫ −3 cos θ

0

∫ r

0
dz r dr dθ = 2

∫ π

π/2

∫ −3 cos θ

0
r2 dr dθ =

2

3

∫ π

π/2
−27 cos3 θ dθ =

−18
([

cos2 θ sin θ

3

]π
π/2

+
2

3

∫ π

π/2
cos θdθ

)
= −12[sin θ]ππ/2 = 12
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Exercises

Exercise 18.

1. Sphere and cones : Find the volume of the portion of the solid sphere
ρ ≤ a that lies between the cones φ = π/3 and φ = 2π/3.

2. Cylinder and paraboloid : Find the volume of the region bounded
below by the plane z = 0, laterally by the cylinder x2 + y2 = 1, and
above by the paraboloid z = x2 + y2.

3. Cylinder and paraboloids : Find the volume of the region bounded
below by the paraboloid z = x2 + y2, laterally by the cylinder
x2 + y2 = 1, and above by the paraboloid z = x2 + y2 + 1.

4. Sphere and cylinder : Find the volume of the region that lies inside
the sphere x2 + y2 + z2 = 2 and outside the cylinder x2 + y2 = 1.

5. Sphere and plane : Find the volume of the smaller region cut from
the solid sphere ρ ≤ 2 by the plane z = 1.
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Solution for (1), (2), (3) and (4) in Exercise 18

1. V =

∫ 2π

0

∫ 2π/3

π/3

∫ a

0
ρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ 2π/3

π/3

a3

3
sinφ dφ dθ =

a3

3

∫ 2π

0
[− cosφ]

2π/3
π/3

dθ =
a3

3

∫ 2π

0

(
1

2
+

1

2

)
dθ =

2πa3

3

2. V = 4

∫ π/2

0

∫ 1

0

∫ r2

0
dz r dr dθ = 4

∫ π/2

0

∫ 1

0
r3 dr dθ =

∫ π/2

0
dθ =

π

2

3. V = 4

∫ π/2

0

∫ 1

0

∫ r2+1

r2
dz r dr dθ = 4

∫ π/2

0

∫ 1

0
r dr dθ = 2

∫ π/2

0
dθ = π

4. V = 8

∫ π/2

0

∫ √2

1

∫ r

0
dz r dr dθ = 8

∫ π/2

0

∫ √2

1
r2 dr dθ = 8

(
2
√
2− 1

3

)∫ π/2

0
dθ =

4π(2
√
2− 1)

3
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Solution for (5) in Exercise 18

V =

∫ 2π

0

∫ π/3

0

∫ 2

secφ
ρ2 sinφ dρ dφ dθ

=
1

3

∫ 2π

0

∫ π/3

0
(8 sinφ− tanφ sec2 φ) dφ dθ

=
1

3

∫ 2π

0
[−8 cosφ−

1

2
tan2 φ]

π/3
0 dθ

=
1

3

∫ 2π

0
[−4−

1

2
(3) + 8]dθ

=
1

3

∫ 2π

0

5

2
dθ

=
5

6
(2π) =

5π

3
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Exercises

Exercise 19.

1. Cylinder and planes : Find the volume of the region enclosed by the
cylinder x2 + y2 = 4 and the planes z = 0 and x + y + z = 4.

2. Region trapped by paraboloids : Find the volume of the region
bounded above by the paraboloid z = 5− x2 − y2 and below by the
paraboloid z = 4x2 + 4y2.

3. Paraboloid and cylinder : Find the volume of the region bounded
above by the paraboloid z = 9− x2 − y2, below by the xy− plane,
and lying outside the cylinder x2 + y2 = 1.

4. Sphere and paraboloid : Find the volume of the region bounded
above by the sphere x2 + y2 + z2 = 2 and below by the paraboloid
z = x2 + y2.
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Solution for the Exercise 19

1. V =
∫ 2π
0

∫ 2
0

∫ 4−r cos θ−r sin θ
0 dz r dr dθ =

∫ 2π
0

∫ 2
0 [4r − r2(cos θ + sin θ)]dr dθ =

8
3

∫ 2π
0 (3− cos θ − sin θ)dθ = 16π

2. The paraboloids intersect when 4x2 + 4y2 = 5− x2 − y2 ⇒ x2 + y2 = 1 and z = 4

⇒ V = 4
∫ π/2
0

∫ 1
0

∫ 5−r2

4r2
dz r dr dθ = 4

∫ π/2
0

∫ 1
0 (5r − 5r3) dr dθ =

20
∫ π/2
0

[
r2

2
− r4

4

]1
0
dθ = 5

∫ π/2
0 dθ = 5π

2

3. The paraboloid intersects the xy-plane when

9− x2 − y2 = 0⇒ x2 + y2 = 9⇒ V = 4
∫ π/2
0

∫ 3
1

∫ 9−r2

0 dz r dr dθ = 4
∫ π/2
0

∫ 3
1 (9r −

r3)dr dθ = 4
∫ π/2
0

[
9r2

2
− r4

4

]3
1
dθ = 4

∫ π/2
0 ( 81

4
− 17

4
)dθ = 64

∫ π/2
0 dθ = 32π

4. The sphere and paraboloid intersect when x2 + y2 + z2 = 2 and
z = x2 + y2 ⇒ z2 + z − 2 = 0⇒ (z + 2)(z − 1) = 0⇒ z = 1 or z = −2⇒ z = 1 since
z ≥ 0. Thus, x2 + y2 = 1 and the volume is given by the triple integral

V = 4
∫ π/2
0

∫ 1
0

∫√2−r2

r2
dz r dr dθ = 4

∫ π/2
0

∫ 1
0

[
r(2− r2)1/2 − r3

]
dr dθ =

4
∫ π/2
0

[
− 1

3
(2− r2)3/2 − r4

4

]1
0
dθ = 4

∫ π/2
0

(
2
√
2

3
− 7

12

)
dθ =

π(8
√
2−7)
6
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Average Values

Exercise 20.

1. Find the average value of the function f (r , θ, z) = r over the solid
ball bounded by the sphere r2 + z2 = 1. (This is the sphere
x2 + y2 + z2 = 1.)

2. Find the average value of the function f (ρ, φ, θ) = ρ cosφ over the
solid solid upper ball ρ ≤ 1, 0 ≤ φ ≤ π/2.
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Solution for the Exercise 20

1.

average =
1(
4π
3

) ∫ 2π

0

∫ 1

0

∫ √1−r2

−
√

1−r2
r2 dz dr dθ

=
3

4π

∫ 2π

0

∫ 1

0
2r2
√

1− r2dr dθ

=
3

2π

∫ 2π

0

[
1

8
sin−1 r −

1

8
r
√

1− r2(1− 2r2)

]1
0

dθ =
3

16π

∫ 2π

0
(
π

2
+ 0)dθ

=
3

32

∫ 2π

0
dθ =

(
3

32

)
(2π) =

3π

16

2.

average =
1(
2π
3

) ∫ 2π

0

∫ π/2

0

∫ 1

0
ρ3 cosφ sinφ dρ dφ dθ

=
3

8π

∫ 2π

0

∫ π/2

0
cosφ sinφ dφ dθ

=
3

8π

∫ 2π

0

[
sin2 φ

2

]π/2
0

dθ =
3

16π

∫ 2π

0
dθ =

(
3

16π

)
(2π) =

3

8
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